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Abstract
The Recurring Big Bang Mechanism (RBBM) posits thatmicro–Big Bangs—localized

energy bursts occurring continuously in a fluid-like, two-component time field—collectively
drive the expansion of the universe. Building on Paper #1 (The Time Field Model),
where time is decomposed into two fields T+(x, t) and T−(x, t), we show how construc-
tive interference between T+ and T− produces small inflation-like bursts (micro–Big
Bangs). Despite these local surges, global near-zero net energy is preserved due to
near-destructive interference on large scales (see Paper #1, Sec. 2.3).

We derive the energy-threshold condition for micro–Big Bangs, referencing the TFM
Lagrangian from Paper #1 (α1, α2 definitions). We outline wave equations in a sta-
ble background, and describe numerical simulations illustrating how localized anoma-
lies nucleate and then dissipate. Comparisons with observational data—including
Planck 2018 CMB measurements (fNL = −0.9 ± 5.1) and cosmic-acceleration con-
straints—demonstrate that RBBM can replicate key features of ΛCDM without in-
voking dark matter or dark energy, while offering novel predictions (e.g. a stochastic
gravitational-wave background from bubble collisions, overlaid with the NANOGrav
12.5-year sensitivity). This framework sets the stage for Paper #3, wherein an ex-
tremely rare macro–Big Bang (the “Initial Spark”) triggers large-scale expansion out-
side our observable domain.

Note on Micro- vs. Macro-Big Bangs: Micro–Big Bangs are frequent, lo-
calized expansions. Macro–Big Bangs differ fundamentally in scale/trigger condition
(Paper #3), involving Planck-scale wave interference collapses beyond δEc. The Ini-
tial Spark (Paper #3) requires δESpark ≫ δEc, governed by β/α2

1.

1 Introduction

Paper #1 introduced the Time Field Model (TFM), in which time is not merely a
coordinate but a two-component field:

T (x, t) =
(
T+(x, t), T−(x, t)

)
,
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governing spacetime structure, quantum phenomena, and gravity in tandem. From Pa-
per #1:

• Global Zero-Energy: Positive and negative contributions from T+ and T− nearly
cancel on large scales, maintaining near-zero net energy.

• Localized Anomalies: Certain regions can experience small bursts of field energy
(micro–Big Bangs); in extreme cases, one obtains a universe-scale macro–Bang (de-
ferred to Paper #3).

Macro–Bang Trigger Distinction: Macro–Big Bangs (Paper #3) require a distinct
threshold

δESpark =
β

α2
1

√
ℏc5
G

exceeding δEc by orders of magnitude. This Planck-scale collapse spawns new cosmic do-
mains outside our observable universe.
Paper #2 (RBBM) now formalizes how thesemicro–Big Bangs occur frequently throughout
cosmic history, driving ongoing expansion in a near-zero-energy background. Any extremely
large-scale event (macro–Big Bang) is deferred to Paper #3.

2 RBBM in Brief

The Recurring Big Bang Mechanism (RBBM) relies on three key points:

1. Fluid-like Background: T+ and T− remain near-destructive globally (Paper #1,
Sec. 2.2), ensuring near-zero net energy.

2. Local Fluctuations Above a Micro-Threshold δEc: short-lived “inflationary bub-
bles” (micro–Big Bangs) form whenever constructive interference surpasses δEc. Here,
α1 is TFM’s kinetic coupling and α2 is the potential strength (Paper #1, Sec. 2.2).

3. Bubble Dissipation and Merger: these small bursts eventually merge back into
the background, incrementally increasing the total volume of space.

3 Micro–Big Bang Threshold Condition

Using the TFM Lagrangian from Paper #1 (Eq. 1): we define local field fluctuations:

∆T±(x, t) = T±(x, t) − ⟨T±⟩bg.

Physically, these ∆T± represent constructive interference where T+ + T− does not fully
cancel. By analogy with bubble nucleation, a micro–Big Bang arises if:

E [∆T±] =

∫
Ω

[
1
2
(∂t∆T±)2 + 1

2
c2(∇∆T±)2 + V

(
∆T+,∆T−)] d3x > δEc. (1)
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Once E > δEc, a brief local “inflationary” phase occurs (Paper #1, Sec. 2.3.2). From
Paper #1, δEc depends on TFM constants α1, α2:

δEc ∼ α2

α2
1

ℏ c5

G
.

4 Wave Equation in the Stable Background

From Eq. (1) in Paper #1: The TFM Lagrangian for T+ and T− yields:

□T+ +
∂V

∂T+
= 0, □T− +

∂V

∂T− = 0. (2)

Gravity via Γµν. The anomaly tensor Γµν modifies Einstein’s equations1:

Gµν + Γµν = 8πG
(
T (matter)
µν + T (TFM)

µν

)
.

Hence, spacetime curvature emerges from wave interference in T±, not purely geometric
background.

5 Numerical Simulations

5.1 Micro–Bang Burst Frequency and Merger

We implement 3D lattice simulations (C++/MPI with GPU acceleration), referencing Pa-
per #1 for HPC details and observational constraints on α1 = 0.1, α2 = 0.05. Total
energy fluctuates within 0.5% over 104 time steps, preserving global near-zero energy
(Paper #1, Sec. 2.3). Typical results:

• Frequent micro–Bang events, each ∼ 10−43 s in duration.

• Bubble collisions produce short-range gravitational waves.

• Effective scale-factor growth from aggregated expansions.

1For derivation see Paper #1, Sec. 2.3.
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Figure 1: A 2D slice from a 643 HPC simulation. Axis: x, y in Planck-length units (10−35m). Local
T+ (left) and T− (right) fluctuations exceed δEc = 0.001, triggering micro–Big Bang nucleation.

5.2 Void Hierarchy (Sec. 5.2)

Figure 2: Simulated large-scale structure (∼ 100 Mpc). Axis: x, y in comoving megaparsecs. Voids
form via repeated micro–Bang expansions merging over cosmic time.

Aggregated expansions produce a void-dominated structure at scales ∼100 Mpc.
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6 Observational Consequences

6.1 Cosmic Expansion vs. Dark Energy

Summed over cosmic history, micro–Bang expansions mimic an effective dark energy density:

ρeff(t) =
〈
ρT+ + ρT−

〉
, (3)

akin to ΛCDM expansion. Planck 2018 [3] data suggests no major deviation yet; DESI/Euclid
could refine.

6.2 Dark Energy Evolution

Figure 3: Equation of state w(z) vs. redshift z. RBBM (blue) vs. ΛCDM (black dashed). HPC
sees mild oscillations for z > 1.

An HPC result is:
w(z) = −1 + δw sin(ωz + ϕ),

with δw ∼ 0.01. Null detection =⇒ constraints on α1, α2.

6.3 Stochastic GW Background

Frequent micro–Bang collisions produce a stochastic GW background:

ΩGW(f) ∝ f−1/3, 10−18 < f < 10−15Hz.
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Figure 4: Predicted micro–Bang GW spectrum (x-axis: frequency in Hz, y-axis: ΩGW). Overlaid
with LISA [6] (purple) and NANOGrav 12.5-year [7] (green) sensitivity curves.

Current NANOGrav 12.5-year data [7] constrains ΩGW(f) near 10−8Hz, making RBBM
marginally testable in the next decade.

6.4 CMB Non-Gaussianity

Unresolved micro–Bang collisions yield non-Gaussian signals in the CMB. HPC suggests

fNL ∼ 1,

aligning with Planck 2018 (fNL = −0.9 ± 5.1 [3]). Future CMB-S4 could detect a mild
fNL shift.

7 Beyond Our Universe: Macro–Big Bangs

δESpark =
β

α2
1

√
ℏ c5
G

. (4)

Here δESpark ≫ δEc, launching expansions beyond our visible universe.

The Initial Spark Mechanism (Paper #3). Macro–Bangs differ in scale/trigger from
micro–Bang expansions. If TFM Papers #4–7 address quantum gravity or particle physics,
they may refine α1 further.

8 Conclusion and Outlook

The Recurring Big Bang Mechanism (RBBM) posits continuous micro–Big Bangs in a
near-zero-energy background:
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• Local Bubble Nucleation: Whenever local fluctuations exceed δEc, an inflation-like
expansion occurs.

• Dark-Energy-Like Effect: Summing expansions reproduces cosmic acceleration,
akin to ΛCDM.

• Stochastic GWs: Bubble collisions produce a GW background, partially within
LISA/NANOGrav reach.

Future HPC simulations, improved LISA/PTA constraints, and CMB-S4 data can confirm
or refute micro–Bang expansions. Paper #3 handles macro–Bangs (δESpark), bridging
Planck-scale wave interference with cosmic inflation.

9 Limitations and Open Questions

HPC Approximations. We assume uniform T± wave interference below Planck scales,
which might be simplistic.

Observational w(z) Constraints. Data for z > 1.5 is sparse; DESI/Euclid (Papers #4–
6) will refine RBBM’s w(z).

Macro–Bang Triggers. Planck-scale expansions with δESpark > δEc are left to Paper #3.

Particle Physics Link. Future TFM Papers #5–7 could explore T± field interactions for
mass generation, refining constraints on α1 and β.

A Bubble Nucleation in TFM (Semiclassical)

Following [2], define the Euclidean action for ∆T±:

SE =

∫
d4xE

[
1
2
(∂µ∆T+)2 + 1

2
(∂µ∆T−)2 + V (∆T+,∆T−)

]
.

Bubble nucleation occurs at rate Γ ∼ e−SE . For typical TFM potentials (Paper #1, Eq. 1),
the critical bubble radius Rc ≈ (∆V )−1/2. If SE < Scrit, a micro–Big Bang forms, briefly
expanding in Minkowski signature.

B Numerical Details (HPC Configurations)

Parameter Setup. Example HPC runs for micro expansions adopt:

N = 643 or 5123, ∆t ≈ 10−43 s, α1 = 0.1, α2 = 0.05 (Paper #1 constraints for galaxy rotation curves, Planck data).

AMR triggers if local E > 0.5 δEc. Absorbing boundary conditions minimize domain-edge
reflections. Global energy remains stable within 0.5% across 104 steps.
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Code Repository: The simulation code and parameter files will be made publicly avail-
able at [DOI/link] upon publication.
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