Quantum Realms in the Time Field Model: Superposition, Entanglement, and the Decoherence Boundary

Paper #18 in the TFM Series

Ali Fayyaz Malik (alifayyaz@live.com)

March 16, 2025

Abstract

We unify quantum mechanics with the Time Field Model (TFM) by explaining superposition, entanglement, and decoherence through time-wave dynamics. Building on TFM's cosmological framework (micro- and macro-Bang expansions) and gauge symmetry foundations, we derive testable predictions for Casimir force corrections, qubit phase noise, and geometric phases in matter-wave interferometry. This work bridges quantum phenomena with cosmic structure formation, offering a wave-based resolution to measurement collapse, non-locality, and the quantum-classical transition.

By introducing a critical radius r_c , this work delineates the quantum-classical boundary, offering a unified mechanism for decoherence across scales. Through illuminating the interplay between quantum coherence and gravitational-scale effects, TFM paves the way for a deeper unification of cosmic and quantum realms.

Contents

1	Intr	oduction	2			
2	Core Quantum Phenomena in TFM					
	2.1	Superposition	3			
	2.2	Entanglement	4			
		2.2.1 2.2.1 Role of DTLs	5			
	2.3	Measurement Collapse	5			
	2.4	Quantum Tunneling	5			
	2.5	Uncertainty Principle	6			
3	Mathematical Framework					
	3.1	Decoherence Radius r_c	6			

4	Experimental Tests				
	4.1 Modified Casimir Force	7			
	4.2 Superconducting Qubits	7			
	4.3 Matter-Wave Interferometry	7			
	4.4 Macroscopic Superpositions & Cosmic Observables	7			
5	Discussion				
	5.1 Unification of Quantum Phenomena	7			
	5.2 Paradox Resolution & Spacetime Foam	8			
	5.3 Measurement Collapse and Entropy	8			
	5.4 Future Work	8			
6	Conclusion	8			

1 Introduction

The Time Field Model (TFM) posits that time is composed of two interacting scalar fields, $T^+(x)$ (future-directed) and $T^-(x)$ (past-directed). This perspective was previously applied to cosmology (Papers #2–3), gravity (Paper #7), and force unification (Paper #8). Building on Paper #1's introduction of Dynamic Time Loops (DTLs) and the two-component time fields T^+ and T^- , we now resolve quantum paradoxes through their wave dynamics, while TFM has also been shown to underlie cosmic expansions (micro- and macro-Bang events), gauge symmetries, and the emergence of an arrow of time.

Despite these successes, certain quantum mysteries remain unresolved within standard frameworks, notably wave-particle duality, non-local entanglement, measurement collapse, and the emergence of classicality out of the quantum domain. In TFM, these phenomena arise naturally from overlapping time waves T^{\pm} , which interfere at sub-Planck scales and propagate outward, shaping both microscopic quantum behavior and large-scale cosmic structures.

A central new concept here is the *critical radius* r_c , which quantifies the spatial extent at which quantum coherence (maintained by T^{\pm} wave interference) gives way to classical behavior. We propose that r_c plays a fundamental role in both quantum-scale phenomena (e.g., measurement collapse) and cosmic-scale processes (e.g., early-universe decoherence). The critical radius r_c not only governs quantum measurement collapse but also underpins early-universe decoherence, connecting microscopic dynamics to cosmic structure formation.

As summarized in Table 1, TFM reinterprets quantum phenomena through time-wave dynamics, resolving long-standing paradoxes such as non-locality and measurement collapse. This paper extends TFM into the quantum domain and provides a unified explanation for superposition, entanglement, tunneling, and measurement collapse, all while linking these phenomena to cosmic evolution and potential experimental tests.

2 Core Quantum Phenomena in TFM

2.0 Summary of Quantum Phenomena in TFM

Before detailing each phenomenon, Table 1 provides a concise comparison of how TFM's wave-based model contrasts with traditional quantum interpretations:

Quantum Phe- nomenon	Traditional Interpretation	TFM Explanation
Wave-Particle Du- ality	Abstract probability waves col- lapse upon measurement.	Particles "ride" physical time waves (T^{\pm}) that guide motion.
Quantum Super- position	Particles exist in multiple states simultaneously.	Overlapping T^{\pm} waves sustain multiple potential states.
Quantum Entan- glement	Non-local "spooky action" with no physical mechanism.	DynamicTimeLoop(DTL)-mediated T^{\pm} coher-ence synchronizes statesacrossdistances.
Measurement Col- lapse	Mysterious wavefunction col- lapse with no dynamical expla- nation.	Environmental T^{\pm} decoher- ence reduces wave coherence to a single state.
Quantum Tunnel- ing	Particle probabilistically "jumps" through classically forbidden barriers.	T^{\pm} waves decay exponentially in barriers, enabling proba- bilistic penetration.
Uncertainty Prin- ciple	Fundamental limit on simulta- neous measurement precision.	Time-wave interference limits simultaneous x and p precision.
Bell's Inequality Violation	Disproves local hidden vari- ables; non-locality remains un- explained.	Non-local T^{\pm} coherence inval- idates hidden variables natu- rally.
Quantum Telepor- tation	Quantum state transfer via en- tanglement and classical com- munication.	Phase-coherent T^{\pm} wave reconstruction enables state transfer.

Table 1: Contrasting traditional interpretations of quantum phenomena with TFM's wavebased explanations.

2.1 Superposition

Mechanism. In TFM, superposition emerges from interference of T^+ and T^- , mirroring micro-Bang expansions (Paper #2). The simplest state vector (Paper #1):

$$|\psi\rangle = \alpha |T^+\rangle + \beta |T^-\rangle. \tag{1}$$

Nonlinear T^{\pm} potentials, as modeled in Paper #2 for micro-Bang expansions, drive decoherence at high amplitudes. This mechanism contrasts starkly with traditional interpretations, replacing abstract probability waves with physical T^{\pm} interference.

Figure 1: Superposition from T^{\pm} interference (DTLs, Paper #1).

Rigorous Wave Expression. In a more explicit field-theoretic form, one may write a local wavefunction component for the particle at position \mathbf{x} and time t as:

$$\Psi(\mathbf{x},t) = \int d^3y \left[T^+(\mathbf{y},t) \,\phi^+(\mathbf{x}-\mathbf{y}) + T^-(\mathbf{y},t) \,\phi^-(\mathbf{x}-\mathbf{y}) \right],$$

where ϕ^{\pm} are Green's functions corresponding to forward/backward time-wave propagation. Constructive interference among ϕ^+ and ϕ^- leads to multi-path amplitude superposition, analogous to standard quantum mechanical superpositions.

2.2Entanglement

Mechanism. Entangled states retain gauge invariance (Paper #8), as T^{\pm} are SU(3)×SU(2)×U(1) singlets, ensuring symmetry in non-local correlations. We can write:

$$\Phi_{\text{entangled}} = \int \left[T^{+}(x_{1}) T^{-}(x_{2}) - T^{-}(x_{1}) T^{+}(x_{2}) \right] d^{3}x.$$
(2)

10.0

Figure 2: Entanglement via DTL phase-locking (Papers #1, #8).

0.0 Space (x)

2.2.1 2.2.1 Role of DTLs

Dynamic Time Loops (DTLs) (Paper #1) mediate entanglement by locking T^{\pm} phases. For an *N*-particle system:

$$|\Psi\rangle_{\text{total}} = \sum_{n} c_n \left| \text{DTL}_n \right\rangle \otimes \left| \psi_{1,n} \right\rangle \dots$$

thus enforcing non-local wave correlations. Phase-coherent T^{\pm} fields ensure that entanglement arises as stable solitonic loops rather than "spooky action."

2.3 Measurement Collapse

Decoherence. In TFM, decoherence aligns with TFM's arrow of time (Paper #5), where entropy growth

$$\Delta S = k_B \, \ln \left(\frac{\Omega_{\text{post}}}{\Omega_{\text{pre}}} \right)$$

locks classical outcomes. Upon interaction with the environment, T^+ and T^- waves lose their delicate balance, leading to a single observed outcome:

$$T(t) = T_0 e^{-\Gamma t}.$$
(3)

Here, Γ_0 is the intrinsic decay rate, while each Γ_k represents environmental coupling at position x_k . Summing these yields a net Γ_{net} .

Figure 3: Measurement-induced decoherence of T^{\pm} waves due to environmental interactions.

2.4 Quantum Tunneling

Mechanism. Time waves can penetrate classically forbidden regions through exponential decay:

$$\psi(x) \propto \exp\left(-\frac{2m(V-E)}{\hbar}x\right).$$
 (4)

Because T^{\pm} wave amplitudes never exactly vanish, a finite probability of transmission persists. Future HPC simulations, building on methods from Paper #3, will test whether T^{\pm} self-interactions (e.g., $\lambda(T^+T^-)^2$) enhance tunneling near Planck-scale potentials.

Figure 4: Tunneling via T^{\pm} wave decay.

2.5 Uncertainty Principle

Wave-packet Limits. At sub-Planck scales $(< \ell_P)$, T^{\pm} transition to discrete quanta (Paper #4), bounding resolution. Thus TFM preserves:

$$\Delta x \, \Delta p \geq \frac{\hbar}{2}.$$

Wave interference broadens momentum distributions when position is localized, mirroring standard quantum limits.

3 Mathematical Framework

Unified Equation of T^{\pm} . TFM unifies T^+ and T^- in a single wave equation:

$$\frac{\partial^2 T}{\partial t^2} - \nabla^2 T = 0, \tag{5}$$

where T splits into forward- and backward-propagating solutions. The total Hamiltonian

$$\hat{H}_{\text{total}} = \hat{H}_{\text{matter}} + \hat{H}_T$$

describes matter-wave interactions (Paper #1). The operator \hat{H}_T can include self-interaction terms $\lambda (T^+T^-)^2$, driving decoherence at large field amplitudes.

3.1 Decoherence Radius r_c

Logistic Function from Paper #7. From Paper 7, r_c follows a logistic transition:

$$f(r, r_c) = \frac{1}{1 + \exp\left[-\frac{(r-r_c)}{w r_c}\right]},$$

governing quantum-to-classical transitions. Unlike standard decoherence boundaries, r_c links gravitational dominance (Paper #7) to quantum collapse. Determining r_c explicitly requires solving non-linear TFM equations.

4 Experimental Tests

4.1 Modified Casimir Force

Time-wave fluctuations slightly perturb vacuum energy near boundaries:

$$F_{\text{Casimir}} = \frac{\pi^2 \hbar c}{240 \, d^4} \Big[1 + \epsilon \Big(\frac{\ell_P}{d}\Big)^2 \Big]. \tag{6}$$

Deviations at $d \lesssim 100\,\mathrm{nm}$ could validate TFM's wave-based corrections.

4.2 Superconducting Qubits

Qubit coherence times might reveal a $1/f^{3/2}$ spectrum if T^+/T^- fluctuations mediate non-Markovian phase noise:

$$\Delta \phi_{\rm TFM} \propto \langle T^+ T^- \rangle.$$

4.3 Matter-Wave Interferometry

Time-wave geometry adds a phase factor to matter-wave loops:

$$\Delta \Phi_{\rm TFM} = \oint \nabla T^{\pm} \cdot d\mathbf{r}.$$
 (7)

Comparisons with Berry's phase in ring-lattice experiments could detect TFM's unique imprint.

4.4 Macroscopic Superpositions & Cosmic Observables

Early-universe T^{\pm} lumps, analogous to micro-Bang expansions (Paper #2), could imprint non-Gaussianities in the CMB. HPC simulations (Paper #3) might refine how r_c shapes cosmic decoherence.

5 Discussion

5.1 Unification of Quantum Phenomena

TFM explains quantum mysteries—superposition, entanglement, measurement collapse using wave interference, bridging them with cosmic expansions. Table 1 shows TFM's wavebased approach supplanting abstract collapse or spooky action.

Unlike Copenhagen, TFM attributes measurement collapse to environmental scrambling of T^{\pm} . Bell non-locality arises from global T^{\pm} phase locking rather than hidden variables. Entangled states remain gauge-invariant (Paper #8), as T^{\pm} are singlets under SU(3)×SU(2)×U(1).

5.2 Paradox Resolution & Spacetime Foam

TFM's global T^{\pm} fields circumvent Bell's theorem by embedding non-local correlations at the wave level. Planck-scale T^{\pm} fluctuations (Paper #4) distort the metric as

$$\Delta g_{\mu\nu} \sim \ell_P^2 \langle (\nabla T^+) (\nabla T^-) \rangle,$$

forming a foam-like structure. HPC studies of sub-Planck scales might confirm or refine such predictions.

5.3 Measurement Collapse and Entropy

From Paper #5, decoherence aligns with entropy growth:

$$\Delta S = k_B \, \ln \left(\frac{\Omega_{\text{post}}}{\Omega_{\text{pre}}} \right),$$

locking classical outcomes. This wave-based approach clarifies how TFM's arrow of time merges with quantum collapse.

5.4 Future Work

- Relativistic QFT Extensions. Paper #10 will extend TFM to Dirac fields, unifying T^{\pm} dynamics with fully relativistic quantum field theory.
- HPC Simulations. Large-scale lattice codes (Paper #3) will model T^{\pm} lumps near r_c , exploring tunneling enhancements from $\lambda(T^+T^-)^2$ and cosmic wave decoherence.

6 Conclusion

By framing superposition, entanglement, tunneling, and measurement collapse as emergent from overlapping time fields T^+ and T^- , the Time Field Model provides a cohesive narrative linking quantum mechanics to gravity and cosmology.

The newly introduced decoherence radius r_c delineates the quantum-classical boundary, thereby clarifying phenomena from subatomic experiments to cosmic-scale decoherence. Proposed experiments—modified Casimir forces, qubit phase noise, and matter-wave interferometry—offer direct tests of TFM's predictions. Meanwhile, cosmic surveys (CMB-S4) could detect non-Gaussianities tied to T^{\pm} lumps. By connecting microscopic quantum events with large-scale structure, TFM underscores a unifying framework bridging the quantum and the cosmic.

Acknowledgments: We thank HPC centers for partial wave-based PDE tests, and references [1, 2, 3, 4, 5, 6, 7] for background. Paper #9 thus complements the gravitational law of Paper #7, focusing on quantum superposition, entanglement, and measurement collapse across scales.

References

- [1] A. F. Malik, The Fundamental Time Field (Paper #1), (2025).
- [2] A. F. Malik, The Recurring Big Bang Mechanism and Continuous Space Creation (Paper #2), (2025).
- [3] A. F. Malik, The Initial Spark: Time Field Anomalies and the Macro Big Bang (Paper #3), (2025).
- [4] A. F. Malik, Spacetime Quantization Through Time Waves (Paper #4), (2025).
- [5] A. F. Malik, The Law of Energy in the Time Field Model (Paper #5), (2025).
- [6] A. F. Malik, Time Field Model and the Arrow of Time (Paper #7), (2025).
- [7] A. F. Malik, Fundamental Fields in the Time Field Model: Gauge Symmetries, Hierarchy, and Cosmic Structure (Paper #8), (2025).